Extensions 1→N→G→Q→1 with N=S3xC23 and Q=D5

Direct product G=NxQ with N=S3xC23 and Q=D5
dρLabelID
S3xC23xD5120S3xC2^3xD5480,1207

Semidirect products G=N:Q with N=S3xC23 and Q=D5
extensionφ:Q→Out NdρLabelID
(S3xC23):1D5 = C15:C22wrC2φ: D5/C5C2 ⊆ Out S3xC23120(S3xC2^3):1D5480,644
(S3xC23):2D5 = (C2xC10):11D12φ: D5/C5C2 ⊆ Out S3xC23120(S3xC2^3):2D5480,646
(S3xC23):3D5 = C22xC15:D4φ: D5/C5C2 ⊆ Out S3xC23240(S3xC2^3):3D5480,1118
(S3xC23):4D5 = C22xC5:D12φ: D5/C5C2 ⊆ Out S3xC23240(S3xC2^3):4D5480,1120
(S3xC23):5D5 = C2xS3xC5:D4φ: D5/C5C2 ⊆ Out S3xC23120(S3xC2^3):5D5480,1123

Non-split extensions G=N.Q with N=S3xC23 and Q=D5
extensionφ:Q→Out NdρLabelID
(S3xC23).1D5 = C2xD6:Dic5φ: D5/C5C2 ⊆ Out S3xC23240(S3xC2^3).1D5480,614
(S3xC23).2D5 = S3xC23.D5φ: D5/C5C2 ⊆ Out S3xC23120(S3xC2^3).2D5480,630
(S3xC23).3D5 = C22xS3xDic5φ: trivial image240(S3xC2^3).3D5480,1115

׿
x
:
Z
F
o
wr
Q
<